Quantum Trajectory Methods for Simulating Solid-State Qubit Systems

Jonathan P. Dowling, QCT Group, NASA JPL, Caltech Jonathan.P.Dowling@jpl.nasa.gov / cs.jpl.nasa.gov/qct/qat.html

Objective

- Collaborative Effort with Australian Centre for Quantum Computer Technology
- Single Electron Transistor Development
- Theory of Measurement of Mesoscopic Open Quantum Systems

Objective Approach

- Matching Funds from Australian Gov't
- Exchange of Scientific Personnel
- Develop General Open Quantum System Approach to RF-SET Modelling and Design
- Quantum Trajectories Approach
- RF-SET Simulator
- Ab initio simulations of RF-SET

Status

- NSA/ARDA Funding Committed
- Australian IREX Matching Funds
- Exchange of Senior Personnel Planned

TEAMING & PARTNERING

G. J. Milburn

R. G. Clark

QUANTUM
Computing Technologies Group
J. P. Dowling

Micro-Devices Lab P. M. Echternach

Collateral Collaborations
P. M. Alsing, UNM
A. Korotkov, UC-Riverside
G. Klimeck, JPL

ROADMAP

SET Design Tool

Experimental Comparison

Quantum Trajectory
Simulations

Models of SET

MOTIVATIONDiVincenzo Commandments with Upgrade*

- I. Identification of well-defined qubits.
- II. Reliable initial state preparation.
- III. Low decoherence rate per gate operation.
- IV. Accurate quantum gate operations (modulo error correction).
- V. High efficiency, strong quantum measurements.
- VI. All resources required scale polynomially with number of qubits.
- VII. Decoherence and error rates per qubit constant with increasing numbers of qubits.
- VIII. Ability to perform computations in parallel physical circuits.
- IX. Fast absolute clock speed.
- X. Encode in decoherence-free subspaces, when possible.
- * 5–10 collected/suggested by JPD and D. F. V. James

V & IX → THOU SHALT USE RF-SET! (For Most Scaleable Solid-State QC Schemes)

Nakamura Scheme Cooper Pair to RF-SET

GENERIC MODEL OF MESOSCOPIC QUBIT WITH RF-SET READOUT

MASTER EQUATION FOR OPEN QUANTUM SYSTEMS

Time Evolution of Open Quantum System

$$i\hbar \frac{d\rho(t)}{dt} = [H, \rho(t)] + \lambda \rho(t)$$

 $\rho(t)$ = density matrix

H = Hamiltonian

 λ = functional of coupling constants

Traditional Numerical Method of Solution Scales Unfavorably as N² in Memory Usage

QUANTUM TRAJECTORY APPROACH Trading Computational Memory for Speed

Breakthrough Numerical Technique from Quantum Optics

"The wave function simulation of the master equation replaces the solution for the N² density matrix elements by simulating the conditional time evolution of a system wave function(dimension N) interrupted by a sequence of quantum jumps. The ensemble distribution can be estimated to any precision by numerically averaging a sufficient number of simulated quantum trajectories."

LARGE-SCALE COMPUTATIONS AND SIMULATION TOOLS

SCALABLITY IN QUANTUM COMPUTING: THE BIG PICTURE

Research Plan

Radio-Frequency Single-Electron Transistors and Measurement Of Mesoscopic Open Quantum Systems

Jonathan P. Dowling, NASA JPL, Caltech

- Research plan for the next 12 months
- Exchange Visits of Senior Personnel
- Develop Mesoscopic Open Quantum System Models for RF-
- SET Used in Kane and Nakamura Schemes
- Develop Computational Code for Quantum
- Trajectory Simulations of Relevant Master Equations
- Compare Theory to Experiment and Numerical Ab Initio Calculations
- Long term objectives (demonstrations)
- Develop RF-SET Design and Test Tool
- Model RF-SET Arrays / Compare with Experiment
- Study of Scalable Architectures and Design Rules